Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.788
Filtrar
1.
Food Chem ; 446: 138871, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432133

RESUMO

A new graft copolymer composed of polystyrene and polylinoleic acid (PLinas) with the sodium salt of iminodiacetate (Ida) was synthesized and used as an adsorbent. The vortex-assisted dispersive solid-phase micro-extraction (VA-dSPµE) method was used for the extraction and pre-concentration of chromium. Multivariate methodologies, such as factorial design and 3D surface plots, were applied for screening and optimizing effective extraction parameters. The influence of diverse analytical parameters, such as pH, sample volume, and interfering ions, on the extraction of chromium was studied. The calibration standard curve exhibited a linear range from 0.01 to 0.50 µg L-1. The relative standard deviation and limit of detection were found to be 1.65 % and 0.003 µg L-1, respectively. Extraction recoveries were found in the range of 96 to 99 % by using certified reference materials (CRMs). The adsorbent capacity of PLinas-Ida was found to be 112 mg g-1. The VA-dSPµE method demonstrated its effectiveness in the pre-concentration and determination of chromium within samples of foodstuffs by graphite furnace-atomic absorption spectrometry (GF-AAS).


Assuntos
Cromo , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Polímeros/química , Microextração em Fase Sólida/métodos , Espectrofotometria Atômica/métodos
2.
Food Chem ; 447: 139037, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513484

RESUMO

This study was aimed at developing a simple and efficient CoSn(OH)6 nanocubes-based preconcentration method for the preconcentration of copper ions from cinnamon extracts for determination by flame atomic absorption spectrometry. The cube-shaped sorbent was synthesized using the simple stoichiometric co-precipitation method under ambient conditions. Experimental factors of the method were evaluated with a comprehensive optimization approach to maximize the extraction efficiency for the analyte. Under the optimal conditions, the limit of detection (LOD), limit of quantitation (LOQ), and linear dynamic range were recorded as 0.98 µg/L, 3.28 µg/L, and 4.0-75 µg/L, respectively. The enhancement factor was calculated as 101.6-fold by comparing the LODs of the optimized and direct analysis systems. Percent recoveries were found to be within an acceptable range (77.6-115 %), with high repeatability using matrix matching calibration strategy. Results validated the proposed method as a highly efficient extraction approach for the monitoring of copper ions in herbal cinnamon extracts.


Assuntos
Cinnamomum zeylanicum , Cobre , Cobre/química , Íons , Espectrofotometria Atômica/métodos , Calibragem , Concentração de Íons de Hidrogênio , Extração em Fase Sólida/métodos
3.
Talanta ; 272: 125782, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364568

RESUMO

The aim of the current study was to separate and determine arsenic in water and fish samples using a novel and green solidified floating organic drop microextraction (SFODME), which is based on switchable hydrophilicity solvent (SHS)-assisted procedure followed by hydride generation atomic absorption spectrometry (HG-AAS). The 4-((2-hydroxyquinoline-7-yl)diazenyl)-N-(4-methylisoxazol-3-yl)benzene sulfonamide (HDNMBA) and tertiary amine (4-(2-aminoethyl)-N,N-dimethylbenzylamine (AADMBA) were used as ligand and SHS, respectively. The use of SHS promotes quantitative extraction of arsenic complexes into an extraction solvent (1-undecanol). Some factors that impact extraction recovery were studied. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.005 µg L-1 and 0.015 µg L-1, respectively. The calibration graph was linear up to 900.0 µg L-1 arsenic, with the enrichment factor is 267. The proposed SHS-SFODME methodology for arsenic quantification in water and fish samples was successfully implemented. The environmental friendliness and safety of proposed method were approved by the Analytical Greenness Calculator (AGREE) and the Blue Applicability Grade Index (BAGI) tools.


Assuntos
Arsênio , Microextração em Fase Líquida , Animais , Água/química , Solventes/química , Arsênio/análise , Espectrofotometria Atômica/métodos , Limite de Detecção , Peixes , Microextração em Fase Líquida/métodos
4.
Water Res ; 253: 121326, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377928

RESUMO

Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cádmio/análise , Água/química , Ácido Edético/química , Águas Residuárias , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Espectrofotometria Atômica/métodos , Adsorção
5.
Artigo em Inglês | MEDLINE | ID: mdl-38301337

RESUMO

The integration of molecular imprinting technique with chromatographic one has a great impact on the assay's selectivity and sensitivity. Herein, a molecularly imprinted solid-phase extraction associated with high performance liquid chromatography (MISPE-HPLC) was employed for simultaneous determination of the co-formulated drugs; tetracycline hydrochloride (TET) and metronidazole (MET), in plasma and in their anti-H-pylori drug for the first time. Two sorts of molecularly imprinted polymers (MIPs) were fabricated using TET and MET as the template molecules, while ethylene glycol dimethacrylate and methacrylic acid were used as a cross-linker and a monomer, respectively. The synthesized MIPs were identified using different techniques. The adsorption-desorption capability of each template was investigated towards its corresponding MIP. The extraction conditions of MISPE was optimized with respect to TET/MIP and MET/MIP sorbent. Bismuth subcitrate (BSC), the third co-formulated drug was analyzed in spiked human plasma using an atomic absorption spectrometric (AAS) method. The performance of the developed methods was assured as per ICH guidelines for analyzing the studied drugs in their pharmaceutical dosage form along with two of their official impurities. In addition, bioanalytical method validation was conducted where linearity was achieved at 2.0-40.0 µg mL-1, 2.0-40.0 µg mL-1 and 5.0-80.0 µg mL-1 for TET, MET and BSC, respectively.


Assuntos
Metronidazol , Impressão Molecular , Compostos Organometálicos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrofotometria Atômica , Tetraciclina , Extração em Fase Sólida/métodos , Preparações Farmacêuticas , Impressão Molecular/métodos , Adsorção
6.
Appl Radiat Isot ; 205: 111184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215645

RESUMO

Boron neutron capture therapy (BNCT) combines neutron irradiation with boron compounds that are selectively uptaken by tumor cells. Boronophenylalanine (BPA) is a boron compound used to treat malignant brain tumors. The determination of boron concentration in cells is of great relevance to the field of BNCT. This study was designed to develop a novel method for simultaneously measuring the uptake of BPA by U87 and U251 cells (two brain tumor cell lines) and number of cells using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results revealed a linear correlation between phosphorus intensity and the numbers of U87 and U251 cells, with correlation coefficients (R2) of 0.9995 and 0.9994, respectively. High accuracy and reliability of phosphorus concentration standard curve were also found. Using this new method, we found that BPA had no significant effect on phosphorus concentration in either U87 or U251 cells. However, BPA increased the boron concentration in U87 and U251 cells in a concentration-dependent manner, with the boron concentration in U87 cells being higher than that in U251 cells. In both U87 and U251 cells, boron was mainly distributed in the cytoplasm and nucleus, accounting for 85% and 13% of the total boron uptake by U87 cells and 86% and 11% of the total boron uptake by U251 cells, respectively. In the U87 and U251 cell-derived xenograft (CDX) animal model, tumor exhibited higher boron concentration values than blood, heart, liver, lung, and brain, with a tumor/blood ratio of 2.87 for U87 cells and 3.11 for U251 cells, respectively. These results suggest that the phosphorus concentration in U87 and U251 cells can represent the number of cells and BPA is easily uptaken by tumor cells as well as in tumor tissue.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Animais , Humanos , Espectrofotometria Atômica , Boro , Reprodutibilidade dos Testes , Neoplasias Encefálicas/radioterapia , Encéfalo , Compostos de Boro , Fósforo , Terapia por Captura de Nêutron de Boro/métodos
7.
Food Chem ; 442: 138492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245986

RESUMO

In this work, we propose a novel approach for extracting Cu and Ni from vegetable oils (which can be expanded to other metals). The method is based on the transference of the analytes to an aqueous acid phase due to the disruption of a three-component solution. The extraction was carried out in two steps. In the first step, a three-component solution was prepared comprising the sample, 1-octanol, and HNO3 solution. Next, the homogeneous system was disrupted by adding 1.0 mL of deionized water, and two phases were formed. The aqueous extract deposited in the bottom of the flask was collected with a micropipette, and Cu and Ni were determined by graphite furnace atomic absorption spectrometry (GF AAS). The developed method presented limits of quantification (LOQ) of 0.25 and 0.17 ng g-1 for Cu and Ni, respectively, and was successfully applied in the analysis of eleven oil samples from different origins.


Assuntos
Grafite , Óleos de Plantas , Óleos de Plantas/química , Grafite/química , Espectrofotometria Atômica/métodos , Água/química
8.
Chemosphere ; 351: 141272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262491

RESUMO

Herein, a coordination polymer gel is proposed for the determination of As(III) in real samples through multispectroscopic techniques viz. spectrophotometry, spectrofluorimetry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Taguchi L32 (46 21) design and adaptive neuro fuzzy inference system (ANFIS) optimized the controllable factors affecting the extraction yielding an experimental S/N ratio of 39.94 dB. The fluorescence quenching (KSV = 2.63 × 106 L mol-1) was static with photoelectron transfer being the main mechanism confirmed by the density functional theory calculations. The limits of detection (LODs), limits of quantification (LOQs) and linear ranges were 0.038 µg L-1, 0.13 µg L-1 and 1.67-116.67 µg L-1, 0.40 µg L-1, 1.21 µg L-1 and 1.67-33.33 µg L-1, 1.07 µg L-1, 3.24 µg L-1 and 3.32-35.37 µg L-1 for the developed enrichment coupled ICP-AES, spectrophotometry and fluorescence sensing methods. Among these methods, the enrichment - ICP-AES method has the lowest LOD, LOQ and the widest linear range followed by the enrichment - spectrophotometry and fluorescene sensing methods. Spectrofluorimetry offers high sensitivity, selectivity, and possible real time monitoring, spectrophotometry provides a cost-effective and versatile option, while ICP-AES manifests multi-element analysis with high sensitivity and low interference. The developed methods were validated and employed for the successful determination of trace As(III) in real samples. The employment of these methods enhances the overall analytical capability for a wide range of sample types and concentrations.


Assuntos
Oligoelementos , Espectrofotometria Atômica/métodos , Oligoelementos/análise , Água , Espectrometria de Fluorescência , Limite de Detecção
9.
Food Chem ; 442: 138426, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237291

RESUMO

This study focuses on the development and application of a novel nanocomposite (functionalized nanodiamonds@CuAl2O4@HKUST-1)-based µ-SPE method for the sensitive and selective extraction of Pb and Cd from food and water samples. The technique offers high sensitivity and selectivity, allowing accurate measurement of these metals at trace levels. The detection limit is 0.031 µg kg-1 for Cd and 0.052 µg kg-1 for Pb, with a relative standard deviation of 1.7 % for Cd and 4.8 % for Pb. The method was successfully applied to real samples and efficiently quantified Pb and Cd in food and natural water samples. The highest concentrations were found in red lentils (0.274 µg kg-1 Pb) and fresh mint (0.197 µg kg-1Cd), but still below recommended limits set by FAO/WHO (300 µg kg-1 for Pb and 200 µg kg-1 for Cd). It promises to ensure food safety, monitor environmental contamination, and informs regulatory decisions to protect public health.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Nanodiamantes , Cádmio/análise , Chumbo , Extração em Fase Sólida/métodos , Água , Espectrofotometria Atômica/métodos
10.
Environ Pollut ; 344: 123348, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219896

RESUMO

Field rapid determination of soil accessible Cu(Ⅱ) was important for environmental safety and human health risk assessment. In this study, an inexpensive red, green, and blue (RGB) color sensor was used for quantitative color difference analysis of the colored solution for soil accessible Cu(Ⅱ) with bis-cyclohexanone oxalydihydrazone as color reagent to develop a new method for analyzing soil accessible under field conditions. First, the calibration curve for RGB color sensor method was established in the standard solutions of Cu(II). Then the "hand shaking + standing" field extraction method for accessible Cu(Ⅱ) was developed. Finally, the method was applied in contaminated soils in the laboratory and in the field, and set the values determined by atomic absorption spectroscopy (AAS) as the standard ones. Results indicated that in the range of 0.1-5 mg L-1 Cu(II), the RGB Euclidean chromogenic difference values were directly linear correlated with the concentration of Cu(II) (R2 > 0.999). The interference of Fe(Ⅲ) and Mn(Ⅱ) could be eliminated by adding citric acid. The "hand shaking + standing" field extraction method could effectively extract the accessible Cu(Ⅱ) from soil with the high extraction rates. The concentrations of accessible Cu(II) in various polluted soils determined by RGB color sensor method were consistent with that determined by AAS, with the relative error within ±5%, the relative standard deviation ≤ 20%. The recovery of Cu(II) in RGB color sensor method was between 97% and 105%, which could meet the requirements of trace analysis of accessible Cu(Ⅱ) in the field. The high accuracy and precision of RGB color sensor method was reconfirmed in the rapid field quantitative assessment of soil accessible Cu(Ⅱ). Due to that the RGB color sensor was low cost, rechargeable, portable, mobile, ambient light resistant, the method would have a great potential for the determination of accessible Cu(Ⅱ) in contaminated soils.


Assuntos
Compostos Férricos , Solo , Humanos , Solo/química , Espectrofotometria Atômica
11.
Food Chem ; 439: 138140, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061298

RESUMO

Rose tea infusion has gained popularity worldwide due to its health benefits. However, it is known that tea plants can be contaminated with heavy metals including copper. Hence, an accurate and applicable analytical method namely emulsification liquid-liquid microextraction based deep eutectic solvent - flame atomic absorption spectrometry (ELLME-DES-FAAS) was proposed to determine copper at trace levels in rose tea samples. Under the optimum experimental conditions, analytical figures of merit for the developed method were examined, and dynamic range, limit of detection (LOD) and limit of quantification (LOQ) were found to be 5.07-246.61 µg/kg (mass-based) with 0.9992 coefficient of determination, 2.50 µg/kg and 8.32 µg/kg, respectively. A matrix matching calibration strategy was employed to boost recovery results, and the acceptable recovery results were recorded between 95.9 % and 118.4 %. According to recovery results, the developed analytical method can be safely employed to determine the concentration of copper in rose tea samples accurately.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cobre/análise , Microextração em Fase Líquida/métodos , Espectrofotometria Atômica/métodos , Análise de Alimentos/métodos , Solventes/química , Limite de Detecção , Chá/química , Poluentes Químicos da Água/análise
12.
Food Chem ; 441: 138243, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159436

RESUMO

In the present study, a green and sensitive analytical method for the determination of copper ion at trace levels in apple tea samples was developed. Simultaneous complexation/extraction of the analyte were achieved by spraying-based fine droplet formation liquid-phase microextraction (SFDF-LPME). Copper ion was complexed with a Schiff base chelating agent called as N,N'-Bis(salicylidene)-1,2-phenylenediamine (BSP). Under the optimum conditions, the developed SFDF-LPME-FAAS and FAAS system were assessed with respect to limit of detection (LOD), limit of quantitation (LOQ), linearity and percent relative standard deviation (%RSD). LOD and LOQ values for SFDF-LPME-FAAS method were found to be 6.0 and 19.9 µg/kg, respectively. Enhancement in calibration sensitivity for developed method was found as 23 folds. In addition, accuracy/suitability of the developed SFDF-LPME-FAAS method were confirmed by spiking experiments. Two different apple tea samples were spiked to different concentration values and percent recovery results from 91.1 and 123.8 % proved the accuracy/suitability of the method.


Assuntos
Microextração em Fase Líquida , Malus , Cobre/análise , Espectrofotometria Atômica/métodos , Quartzo , Limite de Detecção , Microextração em Fase Líquida/métodos , Chá
13.
Water Sci Technol ; 88(11): 2862-2872, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096074

RESUMO

Elimination of the matrix effect is a major challenge in developing a method for the quantification of heavy metals (HMs) in water samples. In this regard, the current research describes the simultaneous analyses of Cu(II), Cd(II), and Ni(II) ions in water matrices through flame atomic absorption spectrophotometry (FAAS) after preconcentration with carrier element-free co-precipitation (CEFC) technique by the help of an organic co-precipitant, 3-{[5-(4-Chlorobenzyl)-3-(4-chlorophenyl)-1H-1,2,4-triazol-1-yl]-methyl}-4-[2,4-(dichlorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (CCMBATT). Based on our literature research, CCMBATT was employed for the first time in this study as an organic co-precipitant for the preconcentration of HMs. Factors such as solution pH, concentration of co-precipitant, sample volume, standing time, centrifugation rate, and time were thoroughly examined and optimized to achieve the highest efficiency in terms of HM recovery. The limits of detection (LODs) (with 10 number of tests) of 0.54, 0.34, and 1.95 µg L-1 and the relative standard deviations (RSD %) of 2.1, 3.3, and 3.0 were determined for Cu(II), Cd(II) and Ni(II) ions, respectively. Recovery results of HMs for the spiked samples were in the range of 92.8-101.0%, demonstrating the trueness of the method and its applicability to the water samples matrix.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Rios , Metais Pesados/análise , Água/análise , Limite de Detecção , Espectrofotometria Atômica/métodos , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Íons
14.
Vive (El Alto) ; 6(18): 802-814, dic. 2023.
Artigo em Espanhol | LILACS | ID: biblio-1530573

RESUMO

La contaminación por arsénico del agua de consumo humano, es un problema de salud pública, porque produce diversas enfermedades cancerígenas y de piel. Objetivo. Determinar niveles de arsénico en el agua de pozos, y evaluar el grado de conocimiento y actitud sobre el consumo del agua familiar. Materiales y métodos. Se utilizaron 96 muestras del agua de pozos del distrito de Juliaca. Las cuales se analizaron en laboratorio de Unidad de Servicios de Análisis Químicos de la Facultad de Química - Universidad Nacional Mayor de San Marcos-Lima, mediante la técnica Espectrofotometría de Absorción Atómica con Horno de Grafito. Los datos de arsénico fueron procesados estadísticamente mediante el diseño completamente al azar. Asimismo, la descripción del conocimiento y actitud del consumo de agua familiar se realizó aplicando la técnica de la encuesta y el instrumento fue un cuestionario de 11 ítems para la variable conocimiento y 7 para la variable actitud, con respuestas de alto, medio y bajo para conocimiento y buena, regular y mala calificadas con escala de Likert. Resultados. La concentración promedio fue 0.031 mg de As/L de agua y entre zonas hubo semejanza (p>0.05). En el grado de conocimiento sobre contaminación con arsénico en el agua de consumo humano respondieron el 40.81 % con calificación alta y el 59.19% están entre medio y bajo; en actitud, la calificación buena obtuvo menos del 50 % de encuestados y el resto están entre regular y mala. Conclusiones. El contenido arsenical en el agua de pozos supera los límites máximos permisibles según Organización Mundial de Salud y más del 50% se exponen al agua contaminada.


Arsenic contamination of drinking water is a public health problem, because it causes various carcinogenic and skin diseases. Objective. To determine arsenic levels in well water, and to evaluate the degree of knowledge and attitude about family water consumption. Materials and methods. Ninety-six samples of well water from the district of Juliaca were used. These were analyzed in the laboratory of the Chemical Analysis Services Unit of the Faculty of Chemistry - Universidad Nacional Mayor de San Marcos-Lima, using the technique Atomic Absorption Spectrophotometry with Graphite Furnace. The arsenic data were statistically processed using a completely randomized design. Likewise, the description of the knowledge and attitude of family water consumption was carried out by applying the survey technique and the instrument was a questionnaire of 11 items for the knowledge variable and 7 for the attitude variable, with answers of high, medium and low for knowledge and good, regular and bad rated with a Likert scale. Results. The average concentration was 0.031 mg As/L water and there was similarity between zones (p>0.05). In the degree of knowledge about arsenic contamination in drinking water, 40.81% responded with high qualification and 59.19% were between medium and low; in attitude, the good qualification obtained less than 50% of respondents and the rest were between regular and bad. Conclusions. The arsenic content in well water exceeds the maximum permissible limits according to the World Health Organization and more than 50% are exposed to contaminated water.


A contaminação da água potável por arsênico é um problema de saúde pública, pois causa várias doenças de pele e carcinogênicas. Objetivo. Determinar os níveis de arsênico na água de poço e avaliar o grau de conhecimento e atitude em relação ao consumo doméstico de água. Materiais e métodos. Foram utilizadas 96 amostras de água de poço do distrito de Juliaca. Elas foram analisadas no laboratório da Unidade de Serviços de Análises Químicas da Faculdade de Química da Universidade Nacional Mayor de San Marcos-Lima, usando a técnica de Espectrofotometria de Absorção Atômica com Forno de Grafite. Os dados sobre arsênico foram processados estatisticamente usando um desenho completamente aleatório. Da mesma forma, a descrição do conhecimento e da atitude do consumo familiar de água foi realizada aplicando a técnica de pesquisa e o instrumento foi um questionário de 11 itens para a variável conhecimento e 7 para a variável atitude, com respostas de alto, médio e baixo para o conhecimento e classificado como bom, regular e ruim em uma escala Likert. Resultados. A concentração média foi de 0,031 mg As/L de água e houve similaridade entre as zonas (p>0,05). Quanto ao grau de conhecimento sobre a contaminação por arsênico na água potável, 40,81% responderam com uma pontuação alta e 59,19% ficaram entre médio e baixo; quanto à atitude, a pontuação boa foi obtida por menos de 50% dos entrevistados e o restante ficou entre regular e ruim. Conclusões. O teor de arsênico na água de poço excede os limites máximos permitidos de acordo com a Organização Mundial da Saúde e mais de 50% estão expostos à água contaminada.


Assuntos
Espectrofotometria Atômica , Análise Espectral/métodos
15.
Anal Methods ; 15(45): 6294-6301, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942813

RESUMO

An analytical method with broad applicability based on cold vapor generation high-resolution continuum source quartz tube atomic absorption spectrometry was developed and evaluated for the determination of total mercury in matrices with various complexities and compositions. Sample preparation for different matrices of food, environmental samples and (bio)polymeric materials and unified operating conditions for derivatization and measurement were evaluated. The method was validated according to established requirements (Eurachem Guide 2014, EC Decisions 657/2002; 333/2007; 836/2011 and Association of Official Analytical Chemists Guide - AOAC). Analytical versatility was checked on various samples of fish fillets, mushrooms, soil, water and water sediment, sludge from a wastewater treatment unit, and (bio)polymeric materials from waste recycled from food packaging, computers and garden tools. Under optimal conditions for cold vapor generation in a batch system, namely 3% (v/v) HCl as reaction medium for 5 mL aliquot samples and a volume of 3.5 mL 0.3% (m/v) NaBH4 stabilized in 0.2% (m/v) NaOH as derivatization reagent, the detection limit for Hg in terms of peak height measurement (n = 7 days) was in the range 0.064 ± 0.004 µg L-1 in water, 0.014 ± 0.001 mg kg-1 in environmental samples and 0.009 ± 0.001 mg kg-1 in (bio)polymeric materials. Overall recovery of Hg by analysis of certified reference materials was 102 ± 20% (k = 2) in food, soil, wastewater and water sediment, and polyethylene. Precision for the measurement of various real samples ranged between 4.2 and 15.0%. A performance study highlighted that the method was sensitive, free of non-spectral interference coming from the multielemental matrix and that it complied with the requirements for Hg determination set in EC Decisions and AOAC Guidelines at least for the more common matrices analyzed for social impact.


Assuntos
Mercúrio , Animais , Mercúrio/análise , Mercúrio/química , Quartzo , Espectrofotometria Atômica/métodos , Gases/análise , Água , Solo
16.
Environ Monit Assess ; 195(11): 1358, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870665

RESUMO

In this study, detection sensitivity of the conventional flame atomic absorption spectrophotometer (FAAS) for the determination of manganese (Mn2+) was enhanced by employing a preconcentration method from wastewater samples. Flower-shaped Ni(OH)2 nanomaterials were synthesized and used as sorbent material in preconcentration procedure. With the aim of attaining optimum experimental conditions, effective parameters of extraction method were optimized and these included pH of buffer solution, desorption solvent concentration and volume, mixing type and period, nanoflower amount, and sample volume. The detection limit of the optimized method was determined to be 2.2 µg L-1, and this correlated to about 41-fold enhancement in detection power relative to direct FAAS measurement. Domestic wastewater was used to test the feasibility of the proposed method to real samples by performing spike recovery experiments. The wastewater sample was spiked at four different concentrations of manganese, and the percent recoveries determined were in the range of 95-120%.


Assuntos
Manganês , Níquel , Níquel/análise , Manganês/análise , Águas Residuárias , Monitoramento Ambiental/métodos , Solventes , Espectrofotometria Atômica/métodos
17.
Anal Methods ; 15(43): 5867-5874, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902026

RESUMO

Cadmium (Cd) is a highly toxic heavy metal that can accumulate in the food chain, posing a significant threat to human health. One of the key food sources through which Cd is often observed is rice. Therefore, determining heavy metals in rice is essential to assess the risk status of rice. Laser-induced breakdown spectroscopy (LIBS) has the advantages of simple sample preparation and fast analysis, which is expected to achieve real-time and rapid detection of rice. In this work, 40 naturally matured rice samples growing from the area that is possibly contaminated with Cd were collected to determine the Cd reference content in rice by graphite furnace atomic absorption spectroscopy as recommended by the Chinese National Standard. LIBS spectral acquisition and analysis are adopted as well. The Cd characteristic spectral lines were selected to predict the Cd content directly using PCA, PLSR, and ELM models, and the coefficient of determination (R2) of the models' training and prediction sets was 0.9278, 0.8920; 0.9036, 0.9771; 0.7940, and 0.8409, respectively. Further, based on the Cd stress effect in rice, the spectra of elements Mn, Mg, K, and Na with highly significant and significant correlation with Cd were selected and coupled with the Cd characteristic spectra to form a new matrix of the same size for quantitative analysis. Based on the stress effect, R2 of models' training and prediction sets was improved to 0.9786, 0.9753; 0.9395, 0.9900; 0.9798, and 0.9927, respectively. It is demonstrated that combining the stress effect when using LIBS for quantitative analysis of Cd in rice reduces the overfitting and further improves the model's prediction accuracy. This work indicates that using LIBS combined with suitable mathematical models to predict the Cd content of naturally matured rice based on stress effects in rice is feasible. It is promising to evaluate the safety of rice by analyzing LIBS spectra.


Assuntos
Cádmio , Oryza , Humanos , Cádmio/análise , Oryza/química , Lasers , Minerais , Espectrofotometria Atômica/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-37791682

RESUMO

In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.


Assuntos
Metais Terras Raras , Neodímio , Neodímio/química , Imãs , Espectrofotometria Atômica
19.
Chemosphere ; 338: 139428, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437620

RESUMO

For the very first time, a microemulsion system in the Winsor II (WII) equilibrium was applied in a sample preparation method for extraction and pre-concentration in the determination of Pb, Cd, Co, Tl, Cu and Ni, in natural waters by high resolution continuum source atomic absorption spectrometry (HR-CS AAS). The method was optimized using the graphite furnace atomization. A simplex-centroid design for determine optimum extraction condition (77.5% aqueous phase, 5% of the oil phase, and 17.5% cosurfactant/surfactant ratio - C/S = 4) was applied. The optimized time for the sample preparations was around 30 min. The analytical performance of the optimized method using HR-CS GF AAS showed that the detection limits were: 0.09, 0.01, 0.06, and 0.05 µg L-1 for determination of Pb, Cd, Tl, and Co, respectively and the enrichment factors were between 6 and 19, considered excellent for all analytes. The RSD values were lower than 5%, demonstrating the good precision of the proposed method. When the optimized method was applied using the HR-CS F AAS, the sensibility increased 9 to 12 times for Cu and Ni, respectively. The analytical method was successfully applied for the determination of analytes in Certified Reference Material and real samples for natural waters such as Brackish water (recovery between 107 and 112%), Saline water (recovery between 83 and 94%), Produced water from oil industry (recovery between 98 and 110%) and Fresh water (recovery 80 and 87% to Cu and Ni respectively). All the results confirming the accuracy of the analytical method proposed. The repeatability of the measurements has been better 5% (n = 3), for all elements.


Assuntos
Cádmio , Metais Pesados , Cádmio/análise , Espectrofotometria Atômica/métodos , Chumbo , Metais Pesados/análise
20.
Food Chem ; 428: 136794, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421668

RESUMO

A novel magnetic Luffa@TiO2 sorbent was synthesized and characterized by using XRD, FTIR and SEM techniques. Magnetic Luffa@TiO2 was used for solid phase extraction of Pb(II) in food and water samples prior to its flame atomic absorption spectrometric (FAAS) detection. The analytical parameters such as pH, adsorbent quantity, type and volume of eluent, and foreign ions were optimized. Analytical features such as the limit of detection (LOD) and the limit of quantification (LOQ) of Pb(II) are 0.04 µg L-1 and 0.13 µg L-1 for liquid samples and 0.159 ng/g and 0.529 ng/g for solid samples, respectively. The preconcentration factor (PF) and relative standard deviation (RSD%) were found 50, and 4 % respectively. The method was validated by using three certified reference materials (NIST SRM 1577b bovine liver, TMDA-53.3 and TMDA-64.3fortified water). The presented method was applied to lead contents of some food and natural water samples.


Assuntos
Luffa , Poluentes Químicos da Água , Animais , Bovinos , Chumbo , Extração em Fase Sólida/métodos , Água , Adsorção , Fenômenos Magnéticos , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...